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According to models based on continuum elasticity, strain in a coherent multilayer has a polynomial depen-
dence with the local composition. By performing atomistic calculations within a tight-binding potential, we
show that composition gradients also affect the coherency strain in Cu-Ni multilayers having a modulation
length in the nanometer range. This additional dependence is due to the presence of interfacial relaxation in
these metallic systems. A Fourier analysis of the strain resulting from �100� sinusoidal composition multilayers
allows us to identify the main missing terms in the continuum models that account for these composition
gradient effects. Beyond this fundamental finding, we discuss how the derived extended model should be
useful to extract both composition and strain fields from an x-ray scattering experiment on such multilayers.
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I. INTRODUCTION

Recently, kinetic Monte Carlo simulations have revealed a
wealth of behaviors concerning the interdiffusion modes in
annealed Cu/Ni multilayers. Interdiffusion is expected to
proceed by a layer-by-layer mode even though the Cu/Ni
system is completely miscible at high temperature. This par-
ticular kinetics is controlled by the strong asymmetry of the
atomic mobilities in this system that also might be respon-
sible for transient sharpening of the interfaces.1 In this work,
we wonder how such phenomena may be evidenced by per-
forming x-ray scattering experiments. In principle, this non-
destructive method provides the pertinent quantities �angular
shift, peak intensities� which are sensitive to interdiffusion.2

However, a full analysis of the x-ray diffractograms giving
access to both the lattice strain and the chemical composition
requires a realistic model that links these two fields together.

In this context, the aim of this study is to investigate the
relation between strain and composition in multilayered
Cu/Ni deposit by comparing atomistic calculations �with
semi-empirical N-body potentials� to the classical Cahn’s
formulation of coherency strain in chemical inhomogeneous
solid solutions.3 Cahn’s continuum model relies on the elas-
ticity theory and was originally restricted to composition
wavelengths that are large with respect to the interatomic
distance. In this work, we show for the CuNi system that
indeed the continuum approach fails in predicting interplane
distances in regions having strong concentration gradients
�i.e., for wavelengths roughly below 20 interplane distances�.
However, by Fourier analyzing the strain fields obtained in
our simulations, we show that a simple extension of Cahn’s
continuum model with additional concentration gradient
terms enables to recover an analytical predictive model for
both long and short composition wavelengths. Interestingly,
some prospective calculations of x-ray diffractograms indi-
cate that x-ray scattering experiments should be capable to
evidence these concentration gradient effects on the lattice
strain.

The paper is organized as follows. In Sec. II, we briefly
present the tight-binding �TB� second-moment approxima-

tion potential �SMA� derived in the past for transition-metal
alloys.4,5 The SMA parameters are then adjusted to reproduce
the main chemical and elastic properties in the CuNi solid
solution. A test of the SMA potential is also provided from
the calculation of strain in epitaxial Ni-films grown on
Cu�100� for which both calculations and measurements are
available.6–8 Then in Sec. III A, we treat the case of a coher-
ent epitaxial multilayer having �001� sharp interfaces. In Sec.
III B, we extend our study to CuNi coherent multilayers hav-
ing diffuse interfaces with sinusoidal concentration profiles.
In Sec. III C, we propose a simple extension of the con-
tinuum models to describe the strain/composition relation in
presence of strong concentration gradient. We then examine
in Sec. IV how these composition gradient effects could be
evidenced from future x-ray scattering experiments. Finally
in Sec. V, a summary of our results is given.

II. MODEL

A. SMA potential

The atomic interactions in CuNi multilayers are described
within the SMA potential derived in the past from the tight-
binding formalism.4,9 This analytical potential was quite suc-
cessful in predicting structural properties in pure fcc metals
and alloys.10 The N-body character of the SMA potential
gives for instance realistic vacancy formation energies,
proper surface relaxations, and good elastic anisotropy when
interactions are extended up to the second-neighbor atom
distances.

According to the SMA potential, the energy En
i of an atom

of type i=A or B on the site n having neighbor atoms of type
j=A or B on the sites m at distances rnm, writes

En
i = −��

m

�ij
2 exp�− 2qij� rnm

r0
ij − 1��

+ �
m

Aij exp�− pij� rnm

r0
ij − 1�� , �1a�

where Aij, �ij, pij, and qij are the 12 parameters to be ad-
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justed. r0
ii is the first neighbor distance in the pure fcc metal

structure of type i, and r0
ij is arbitrary fixed to the average

value �r0
ii+r0

j j� /2. To perform molecular statics �MS� simula-
tions within this type of semiempirical potentials, cutoff
functions in Eq. �1� are generally introduced to avoid any
discontinuities in energies and forces. In this work, we use
the cutoff function proposed by Creuze et al. �see Ref. 11 for
more details�. This latter consists in replacing the exponen-
tial terms in Eq. �1� by fifth-order polynomial forms for in-
teractions distances rnm greater than the next-nearest-
neighbor distances. Note also that the cutoff distances at
which the interactions vanish are the fourth-nearest-neighbor
distances in order to give the proper relative stability be-
tween fcc and bcc structures.11

In Table I, we report the values of the parameters Aij, �ij,
pij, and qij used in this work. For pure metals, the fitting
procedure11 consists in reproducing the experimental values
of the cohesive energies, the atomic volumes, the bulk
moduli, and the Rose universal equation.12 Concerning now
the Cu-Ni interactions, the four crossed parameters are ad-
justed from the following experimental data: the alloy heats
of solution for single substitutional impurities 	Esol

Cu in Ni


0.11 eV and Esol
Ni in Cu
0.03 eV �Ref. 13��, the bulk

modulus B
�BCu+BNi� /2 �Ref. 14� and the lattice parameter
a0
�a0

Cu+a0
Ni� /2 �Refs. 15–17� of a Cu0.5Ni0.5 solid solution.

Note that these four quantities depend on lattice relaxation
effects and have required molecular statics calculations in
this work.

B. Bulk properties

For sake of clarity, we only present here the bulk proper-
ties resulting from the SMA potential �and its parameters
obtained in Sec. II A� that are pertinent thereafter in this
study. We first determine the Ni concentration dependence of
the average lattice parameter a0�c� of an ideal solid solution
Cu1−cNic. This was achieved by placing randomly the Ni and
Cu atoms on a fcc structure of lattice parameter a, in a simu-
lation box having periodic conditions in the three directions.
Then, MS calculations give access to the fully relaxed posi-
tions of the atoms in the structure and the corresponding
energy at T=0 K. By repeating these calculations from vari-
ous a values, one obtains the average lattice parameter a0�c�
that minimizes the energy of Cu1−cNic system at a given Ni
concentration c. As a result of these calculations, we find that
the c dependence of a0�c� can be well described by the fol-
lowing expansion:

a0�c� 
 a0�c0�	1 + �1�c − c0� + �2�c − c0�2 + �3�c − c0�3� ,

�2�

with c0=0.5, a0�0.5�=3.57194 Å, �1=−26.7 10−3, �2
=−1.14 10−3, and �3=−3.90 10−3. Equation �2� corresponds

to an almost linear behavior ��1��2 ,�3� that is consistent
with Vegard’s law observed experimentally in this
system.15–17

According to elasticity theory, the ratio between the two
second-order elastic constants C12 and C11 controls the per-
pendicular strain field in a coherent epitaxial CuNi
multilayer having a free 	100� surface. It is therefore of in-
terest to know how these quantities vary with the concentra-
tion c in an homogeneous alloy. To determine C11�c� and
C12�c�, we perform systematic MS calculations of deformed
simulation boxes with respect to the average a0�c� value ob-
tained previously. The results of these calculations are plot-
ted in Fig. 1 and compared to experimental data. For pure Cu
�c=0� and pure Ni �c=1� crystals, we also calculate the
third-order elastic constants C111, C112, and C123 that might
also play a role in the tetragonal deformation considered in
this work. In practice, the strain tensors described in Refs. 18
and 19 were applied for these calculations. In Table II, values
of these elastic constants are reported and compared to ex-
perimental data.20,21

Considering the simple form of the SMA potential, the
resulting elastic properties shown in Fig. 1 and in Table II are
in quite good agreement with experimental data. The main
discrepancy appears for the Ni value of C11 that is underes-
timated. On the other hand the energy variation under hydro-
static deformation that are related to the bulk modulus B
= �C11+2C12� /3 and to the anharmonicity of the SMA poten-
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FIG. 1. �Color online� Elastic constants C11�c� and C12�c� as a
function of the Ni concentration c in an ideal CuNi solid solution:
��� calculated values from the SMA potential; ��� experimental
data �Ref. 14�.

TABLE I. Values of the SMA parameters used in this work.

�i , j� Aij pij qij �ij

r0
ij

�Å�

�Cu,Cu� 0.1084 10.377 2.6335 1.3434 2.56

�Ni,Ni� 0.1217 10.763 2.4349 1.6396 2.49

�Cu,Ni� 0.1529 9.6999 2.9569 1.6281 2.525
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tial 	through the combination of the constants B and C111
+6C112+2C123 �Refs. 18 and 19�� are correctly reproduced.
This is also the case for the B�c� variation that increases
almost linearly as expected from experiments.

Anticipating again the comparison between continuum
and atomistic approaches made in this work, it is also in-
structive to discuss how the ratio 2C12 /C11 varies with the
concentration c. From Fig. 1, this latter is found to be almost
constant with c �close to the value of 1.5� while a decrease
with c is observed experimentally �from 1.45 to 1.21�. This
limitation of our interatomic potential is due to the underes-
timated Ni value of the tetragonal shear constant C�= �C11
−C12� /2 that arises from the second-moment approximation
of the density of states �DOS� in TB model. For the Ni ele-
ment, higher-order moments of the DOS should be ac-
counted in future work for a more realistic value of C�.22

However, since we are mainly concerned with the effect of
concentration gradient on the lattice strain, the fact that
2C12 /C11 does not depend on the concentration in our model
does not change the conclusions drawn in this work. In fu-
ture work, more realistic calculations should however ac-
count for this property that is also often neglected in-phase
field continuum models.23

C. Interface properties

Atomistic simulations can provide valuable information to
rationalize surface and interface phenomena. In the past, the
SMA potential has been quite successful in this task.10 For
instance, the complex surface reconstruction of one Ag
monolayer deposited on a �111� Cu surface was elucidated.24

More recently, the interpretation of the self-organization ob-
served on the �111� Ag surface after the deposition of a Cu
submonolayer was also possible.25 In Sec. II A, values of the
SMA parameters were determined to mimic the bulk proper-
ties of the CuNi system. In this section, we now wish to test
its ability to reproduce some relaxation behaviors at the vi-
cinity of interfaces. For this purpose, we choose the case of
an ultrathin Ni film deposited on a clean �001� Cu surface
which has been analyzed in detail both experimentally and
theoretically.

In Fig. 2�a�, we first plot the relaxed interplane distances
d��z� �compared to bulk Cu� calculated in a coherent 5
monolayers �ML� Ni film deposited on a Cu �001� substrate.
The low-energy electron-diffraction �LEED� measurements
performed by Platow et al.7 on this system �from a deposi-
tion at room temperature with a rate about 0.6 ML/min fol-
lowed by a brief heat treatment at 400 K� and the ab initio

calculations from Spišák et al.6 are also reported for com-
parison. In addition, we consider in Fig. 2�b� the situation
where the Ni deposit is covered by a surfactant Cu mono-
layer as it was envisaged by Spišák et al. to interpret the
LEED data. In these two limiting cases, our calculations give
a tetragonal distortion of the Ni film that is similar to ones
found in previous works. A tendency to slightly underesti-

TABLE II. Some elastic constants �in GPa� of the pure elements according to the SMA potential and
compared to experimental values

B C11 C12 C111 C112 C123

Cu 141 169 127 −1430 −950 −170

Ref. 20 135 166 120 −1271 −814 −50

Ni 186 225 166 −1970 −1310 −210

Ref. 21 184 250 151 −2100 −1340 60
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FIG. 2. �Color online� Interplane distances d��z� �compared to
bulk Cu, dCu� in a coherent 5 ML Ni film deposited on a Cu �001�
substrate assumed without �a� and with �b� a capping Cu mono-
layer: ��� calculated values from the SMA potential; ��� experi-
mental data from Ref. 7; and ��� ab initio calculations from Ref. 6.
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mate the Ni-Ni distances with respect to the experiment val-
ues can however be seen in our model. This is partly due to
the already mentioned overestimation of the 2C12 /C11 ratio
for the Ni element. Without any surfactant Cu layer, the in-
terplane distances slightly increase by approaching the inter-
face. Interestingly, this latter has an interplane distance that
remains close to a Ni-Ni spacing in the distorted film. If one
assumes that there is no intermixing, the calculated interfa-
cial distance seems to slightly underestimate the experimen-
tal one. On the surface side and although the coherency
strain already causes a contraction of the Ni planes, our
model predicts an inward relaxation of the first surface plane
in agreement with the experimental data. The capping Cu
layer in our calculations mainly affects the second surface
distance in an oscillatory manner that is curiously similar to
the experimental one. However, it should be recalled here
that according to Platow et al.7 the LEED’s measurements
cannot give access to the composition profiles for the Cu-Ni
system and therefore evidence the presence of such a cap-
ping Cu layer. Moreover, intermixing at interfaces and sur-
factant effects are strongly dependent on the temperature
conditions, the deposition rate and on subsequent heat treat-
ments of the film. Very recently this subject has been largely
revisited by Meyerheim et al. �see Ref. 8� by combining both
surface x-ray diffraction and molecular-dynamics simula-
tions on that system. These authors elucidate in particular the
state of intermixing in this thin film when it is deposited at
low deposition rate �0.16 ML/min� and T=300 K. In these
conditions, no surfactant effect is found and some significant
intermixing occurs at the interface during the first stage of
the thin-film growth.8 More importantly for the purpose of
our paper, the x-ray study of Meyerheim et al.8 reveals some
marked inward relaxations at the interface with a vertical
Ni-Cu spacing across the intermixed interface that is close to
the Ni-Ni spacing �and even shorter�. This latter interfacial
Cu-Ni property is rather consistent with the trends obtained
from our calculations. It also indicates that usual elasticity
theory will fail in predicting interplane distances near Cu/Ni
interfaces as it will be shown Sec. III.

III. STRAIN IN (001) Cu/Ni MULTILAYERS

A. Sharp (001) interfaces

The case of a coherent multilayers with sharp interfaces
and a free 	001� surface is analyzed in this section. It is also
the place where we briefly recall the continuum equations
that provide the composition dependence of strain for the
simple geometries considered in this work. This formalism is
based on the usual linear and nonlinear elasticity theory.26–28

Typical multilayer considered here is made of few tens of
identical Cu/Ni bilayers synthesized on a cleaved foreign
substrate �for instance by magnetron sputtering on a MgO
substrate�. The as-grown multilayer ends with a free 	001�
surface. The sample is therefore free of stress in this direc-
tion z. The multilayer also remains coherent which means
that the Cu and Ni regions have the same in-plane distance
denoted d� �d� is therefore the distance between two adjacent
	100� rows of atoms in the x-y planes parallel to the inter-
faces�. When deposited on a MgO substrate, the interface

coherency is generally observed for Cu/Ni multilayer having
a modulation length about 40 atomic planes or less. For sym-
metrical bilayers, the in-plane distance is then close to the
average value d� = �dCu+dNi� /2
1.785 Å.29 In this geom-
etry, the coherency strain causes a contraction �or a dilata-
tion� of the interplane distances d��z� along the z axis, if
these planes contain the smallest element �nickel atoms� or
the biggest element �copper atoms�. For pure planes that are
relatively away from the interfaces the values of the d��z�
spacings can be evaluated from the classical elasticity theory.
In this framework, using Voigt notation for a cubic system
with a coordinate axis taken to be the principal axis and
considering that the principal stresses �i and strains �i obey
to a state of biaxial stress we have �1=�2=�, and �3=�4
=�5=�6=0. This tetragonal distortion also implies that

�1 = �2 = �� =
d�

d0
− 1, �3�

and

�3 = �� =
d�

d0
− 1, �4�

where d0=a0 /2 is the bulk equilibrium interplane distance.
Using the linear relationship �i=Cij� j between stress and
strain through the elastic constant Cij, one obtains

�� =
− 2C12

C11
�� , �5�

and therefore a direct estimation of the resulting d��z� inter-
plane distances in z pure regions 	denoted d�

lin.�z� below for
linear theory�. For large elastic deformations, nonlinear elas-
ticity might be invoked. Considering the same state of biax-
ial stress and using a Lagrangian formulation of the principal
stresses �i and strains �i, we have the strain-stress relation
�i=Cij� j +

1
2Cijk�k�l with Lagrangian strains that in our case

reduce to the following nonvanishing terms:

�1 = �2 = �� = �� +
1

2
��

2, �6�

and

�3 = �� = �� +
1

2
��

2 . �7�

Again, the free 	001� surface implies that �3=0. Combining
this condition and the strain-stress relation provides the fol-
lowing implicit nonlinear solution for the perpendicular
strain ��,

C111

2
��

2 + �C11 + 2C112����� + �C112 + C123���
2 + 2C12�� = 0,

�8�

and therefore the resulting d��z� spacing in z pure regions
	denoted d�

nonlin.�z� hereafter�. Considering now an homoge-
neous region where along z the concentration c�z� does not
vary significantly, one can also use Eq. �5� 	or Eq. �8� for
large deformation� to estimate the interplane distance
d�	c�z�� by taking into account the fact that both elastic
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constants and the equilibrium lattice parameter a0=2d0 of the
solid solution change with c as shown in Sec. II B. Thus,
according to the linear continuum approach formulated in
Eq. �5� and using Eq. �2�, one obtains the following local
concentration dependence of the interplane distance
d�

lin.	c�z��:

d�
lin.�c� = d��c� + d��c���

n=1

3

�n�c − c0�n� �9�

where d��c�=d0�c0�−2C12�c� /C11�c�	d� −d0�c0�� and d��c�
= 	1+2C12�c� /C11�c��d0�c0�. If, in addition, the ratio
2C12�c� /C11�c� is almost constant as obtained in Sec. II C
from our SMA potential, then d�

lin.	c�z�� has a simple poly-
nomial dependence with c�z�.

On a discrete lattice where concentration c�i� are defined
per plane i, the spacing between two adjacent planes i and
i+1 is evaluated from Eq. �9� by replacing c�z� by the aver-
age value 	c�i�+c�i+1�� /2. Similarly from Eq. �8�, the con-
centration dependence of Cij, Cijk, and d0 gives an estimation
of d�

nonlin.	c�z�� in presence of large deformation. In order to
have a direct quantitative comparison between atomistic and
continuum calculations of the strain field, values of the lat-
tice parameter and of the elastic constants are the ones given
by the SMA potential in Sec. II B. In particular for d�

lin.�c�,
the term 2C12�c� /C11�c� is fixed to a constant value of 1.49.
For d�

nonlin.�c�, elastic constants are also taken from Table II
and are chosen to vary linearly with c.

In Fig. 3, we first consider the case of a coherent sym-
metrical �001� Cu/Ni multilayer with perfectly sharp inter-
faces. The modulation length 	 of a bilayer is fixed to 20
planes and the in-plane distance d� = �dCu+dNi� /2=1.785 Å.

Molecular statics calculations, within the SMA potential de-
scribed in Sec. II, are performed on a bilayer having periodic
conditions in the three directions. By varying the size of the
simulation box along the z axis, one obtains a minimum of
the total energy of the system that corresponds to the relaxed
structure that is free of stress along the z direction. The re-
sulting d�

SMA�z� profile is plotted in Fig. 3 and compared to
d�

lin.�z� and d�
nonlin.�z�. Far from the interfaces, the interplane

distances predicted from the three approaches are very close.
The gain in using nonlinear theory from Eq. �8� can be no-
ticed, this remains however a small refinement with respect
to the linear model of Eq. �9� due to the low �� values
reached �about 2%�. Considering now the strain at the inter-
faces, atomistic calculations reveal a marked interfacial re-
laxation that spreads over five planes. The d�

SMA�z� profile is
asymmetric with a Ni-Cu interplane distance that is close to
the one found in the Ni region. This behavior is similar to the
situation observed at the interface of the 5 ML Ni/Cu film
shown in Fig. 2. Moreover in Fig. 3, the interfacial values of
d�

lin. and d�
nonlin. are also reported. Clearly, applying the con-

tinuum models to determine the interfacial distance is not
correct since by definition the concentration profile varies
strongly in this region. It is however instructive to show that
a brute application of these models near interfaces fails in
describing the strain field. In Secs. III B and III C, a system-
atic study of Cu/Ni multilayers with diffuse interfaces will
enable us to identify the main terms that are missing in the
continuum models.

B. Diffuse (001) interfaces

Classical continuum models that link composition and
strain fields together cannot be applied in multilayer regions
where the composition varies strongly. This has been shown
in Sec. III A for the ideal case of a multilayer having per-
fectly sharp interfaces. For diffuse interfaces, what is the
typical wavelength above which elasticity theories become
valid? To answer this point we have performed systematic
MS calculations on multilayers presenting sinusoidal con-
centration profiles along the z direction and with different
wavelengths 	. As in Sec. III A, we consider the same state
of biaxial stress and use the same relaxation procedure to
determine the strain established in the coherent multilayer.
The Ni and Cu atoms are now randomly distributed per plane
i, according to the concentration profile,

c�i� − c0 = c0 cos�2
i/	� , �10�

with c0=0.5. Again, the fully relaxed positions of the atoms
in these bilayers are obtained for a stress null along z and a
constant in-plane distance d� = �dCu+dNi� /2=1.785 Å. The
position of a given plane is calculated by averaging the po-
sitions of the atoms that belong to this plane. These calcula-
tions are made for simulation boxes containing at least 400
atoms/plane to ensure low uncertainty on the average plane
positions.

In Fig. 4, we report the interplane distance profiles
d�

SMA�z� for sinusoidal concentration profiles of wavelengths
	=10, 20, and 30 planes. The atomistic calculations are com-
pared to the d�

lin.�z� and d�
nonlin.�z� profiles predicted by the
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FIG. 3. �Color online� Interplane distances d��z� in a coherent
�001� Cu/Ni multilayer with sharp interfaces. The modulation
length 	=20 planes and the in-plane distance d� = �dCu+dNi� /2
=1.785 Å. Calculations are obtained from ��� the SMA potential
	Eq. �1��, ��� the nonlinear continuum model 	Eq. �8��, and ��� the
linear continuum model 	Eq. �5��. On the figure, spacings are re-
ported for half a bilayer only. The Ni region �for z�0� and the Cu
region �for z�0� are delimited by an Ni-Cu interplane at z=0.
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linear 	Eq. �9�� and the nonlinear 	Eq. �8�� continuum models
for these bilayers. For the large composition wavelength �	
=30 planes� considered in Fig. 3�c�, both atomistic and con-
tinuum descriptions converge to very close d��z� curves. For
a sinusoidal composition field, one obtains an almost pure
sinusoidal distance profile of the same wavelength. From the
linear model of Eq. �9�, this result becomes obvious if one
bears in mind that the term 2C12�c� /C11�c� is taken as con-
stant and �1��2 ,�3 for the CuNi system. Note that this

simple linear relation between d��z� and c�z� can be already
found in the very first studies on the x-ray characterizations
of multilayer systems.2 For 	=20 planes in Fig. 3�b�, only
slight differences might be noticed and the use of continuum
models remains quite accurate. It is for shorter composition
wavelengths �below 	=20� that deviations appear on the
strain-composition relationships given by the two ap-
proaches. From Fig. 3�a� where the case 	=10 is reported,
one can note that the average value of d�

SMA�z� profile is
slightly increased and its amplitude decreased with respect to
the ones given by elasticity theories. More significantly for
short 	, atomistic calculations reveal that the strain response
to a sinusoidal composition profile is not simply a sinusoid
with the same wavelength but rather some additional har-
monics appear in the lattice spacing profile.

C. Composition/strain model

To quantify the deviations from continuum models ob-
served in our atomistic calculations for short composition
wavelength, we perform a Fourier analysis of the interplane
distance profiles. For this purpose the various d��z� profiles
obtained in Sec. III B from diffuse sinusoidal multilayers are
now formulated according to the following Fourier series:

d��z� = �
n

an�	�cos�nZ� , �11�

where Z=2
z /	 and an�	� are the Fourier coefficients to be
adjusted for a given wavelength 	. Note that the an�	� coef-
ficients can be also derived analytically in the framework of
the linear model of Eq. �9�. Indeed, considering the c�i� ex-
pression given by Eq. �10� and again a constant ratio for the
2C12�c� /C11�c� term in Eq. �9�, one obtains

d�
lin.�z� = d� + d���

n=1

3

�nn cosn�Z�� �12a�

=�
n=0

3

an
lin.�	�cos�nZ� , �12b�

with n= 	c0 cos�
 /	��n and the following Fourier coeffi-
cients: a0

lin.�	�=d�+d��22 /2, a1
lin.�	�=d���11+3�33 /4�,

a2
lin.�	�=d��22 /2, and a3

lin.�	�=d��33 /4. Thus, even for
the linear model, some 	 dependence of the an

lin. coefficients
is expected due the discretization of the composition profile
on the crystal lattice �i.e., the approximation that c�z�
= 	c�i�+c�i+1�� /2�. We will verify however that the influ-
ence of 	 on the an

lin. is small in agreement with the previous
observations that d��z� remains close to a sinusoid within
this model.

For composition wavelengths 	 ranging from 10 to 40
planes, we report in Fig. 5 the an�	� coefficients resulting
from the d�

lin.�z�, the d�
nonlin.�z� and the d�

SMA�z� profiles. The
coefficient a3�	� is negligible here and not shown.

Considering first the two analytical approaches in Fig. 5,
we note that the an

nonlin.�	� given by the nonlinear model 	Eq.
�8�� have variations similar to the an

lin. ones. Numerically,
each an

nonlin.�	� and an
lin. terms differ mainly by a constant and
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FIG. 4. �Color online� d��z� profiles obtained from �001� Cu/Ni
multilayers having sinusoidal composition of wavelength 	, from
��� the SMA potential 	Eq. �1��, ��� the nonlinear 	Eq. �8��, and
��� the linear continuum models 	Eq. �5��. For z=0, the Ni concen-
tration is maximum.
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can be related together through the following equation:

an
nonlin.�	� 
 an

lin.�	� + kn �13�

where kn are constants.
Comparing now the an

nonlin.�	� to the an
SMA�	� resulting

from the molecular statics calculations, we note that they
both converge to close values when 	 becomes large 	i.e.,
when �2=c0

2 sin2�
 /	� tends to zero in Figs. 5�a� and 5�c�
and 1=c0 cos�
 /	� tends to 0.5 in Fig. 5�b��. The main

result to be underlined in Fig. 5 is certainly the specific 	
dependence of the an

SMA�	�. Whereas the variations in
a0

SMA�	� and a1
SMA�	� remain low, the a2

SMA�	� coefficient
strongly increases when 	 decreases.

These observations suggest that some terms are missing in
the continuum models to capture the strain profiles given by
the atomistic calculations at short wavelength. Seeking for an
extended continuum model, one can first exclude some addi-
tional cn terms since the nonlinear elastic model gives the
correct Fourier coefficients for large 	. New terms depending
on the concentration gradient �c are therefore to be consid-
ered in details. Since the d��z� spacing does not depend on
the sign of �c, additional terms should obey to this symme-
try property. Thus, the difference between d�

SMA�c� and
d�

nonlin.�c� might take the general form,

d�
SMA�c� = d�

nonlin.�c� �14a�

+ f	��c�2n,��2nc�k,ck��c�2n,ck�2nc, . . .� , �14b�

where n and k are integers and f is a linear function to be
determined. Hopefully, using Eqs. �12a�, �12b�, �13�, �14a�,
and �14b�, it is possible to identify the leading terms in the
expansion of f that reproduce well the 	 dependence of the
an

SMA coefficients in Fig. 5. Indeed, using Eq. �10� and ex-
pressing via finite differences the Laplacian �2c for the dis-
tance d��z� between the planes i and i+1, one writes �2c
� 	c�i+2�−c�i+1��− 	c�i�−c�i−1�� and obtains

�2c 
 4�3/c0
2 − 1�cos�Z�/d0

2. �15�

This term directly controls the a1 component in Fig. 5�b� and
enables to mimic the linear decrease with 1 observed in
a1

SMA. On the other hand, the combination of a term ��c�2

and a crossed term �c−c0��2c will cause a change of both
the a0�	� and a2�	� Fourier coefficients in the following
manner:

��c�2 
 2�2	1 − cos�2Z��/d0
2, �16�

and

�c − c0��2c 
 2��2
2/c0

2 − �2�	1 + cos�2Z��/d0
2, �17�

with the finite difference approximation �c�c�i+1�−c�i�. A
linear combination of ��c�2 and �c−c0��2c allows a very
fine description of the �2 dependence of the atomistic calcu-
lations as it is shown in Figs. 5�a� and 5�c�.

To summarize, we establish an extended composition/
strain relation �denoted d�

ext.�c�� in presence of strong con-
centration gradients that writes

d�
SMA�c� 
 d�

ext.�c� , �18a�

=d�
nonlin.�c� + �0��c�2 + 	�1 + �2�c − c0���2c , �18b�

where �0=−0.182 Å3, �1=0.039 Å3, and �2=−0.544 Å3,
and d0=1.786 Å for the CuNi system.

IV. DISCUSSION

We have mentioned in Sec. I that a reliable composition/
strain model would be valuable to interpret precisely x-ray
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FIG. 5. �Color online� Fourier components an�	� of the d��z�
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lin., and �dotted line� an
ext. from Eq. �18�.
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scattering spectra of multilayers. In reverse, it is also of in-
terest to quantify if such experimental techniques would be
able to evidence the composition gradient effects established
in this work 	in Eq. �18�� for the CuNi system. To illustrate
this point, we first show in Fig. 6�a� for a sinusoidal compo-
sition profile with 	=12 planes, the interplanar spacings
given by the nonlinear continuum model 	d�

nonlin.�z� from Eq.
�8��, our extended model 	d�

ext.�z� from Eq. �18�� and the

d�
SMA�z� profiles of the atomistic calculations. Clearly in Fig.

6�a�, the extended model derived in this work enables to
capture the composition gradient effects since d�

ext.�z� and
d�

SMA�z� are almost superposed and differ from the d�
nonlin.�z�

profile. In order to evaluate if such differences are measur-
able from x-ray diffraction, we then report in Fig. 6�b� the
out-of-plane x-ray spectra resulting from such sinusoidal
multilayers with a number of bilayers that is arbitrarily fixed
to N=100. Calculations are made in the framework of the
kinematic theory of x-ray diffraction in the simple Bragg
geometry where the scattering vector q is parallel to the z
direction. From the relaxed z positions zj of the Ni and Cu
atoms obtained in our atomistic calculations in one periodic
bilayer, the x-ray scattered intensity I�q� of one multilayer
containing N identical bilayers can be evaluated from the
following product:2

I�q� � S�q�2F�q�2, �19�

where

S�q� =
sin�Nq	d̄/2�

sin�q	d̄/2�
�20�

is the interference function of the superlattice with d̄ defined
as the average interplane distance and F�q� is the structure
factor of the bilayer that is calculated by summing over all
the j atoms

F�q� = �
j

f j exp�− iqzj� , �21�

with f j being the atomic scattering factor of the jth atom.
From Refs. 30 and 31, at the x-ray energy corresponding to
the copper emission line K�, we use f j = fNi=15+ i0.51 for a
Ni atom and f j = fCu=17+ i0.59 for a Cu one. On the other
hand, from the continuum composition/strain models de-
scribed in this work, a direct calculation of the structure fac-
tor F�q� is also possible for a given concentration profile.
The sum in Eq. �21� is made over all the i planes with a
scattering factor per plane f i= fNic�i�+ fCu	1−c�i��. The posi-
tion zi of the i plane is directly deduced from the correspond-
ing d��z� profile.

In Fig. 6�b�, the comparison of the main satellite peaks of
the calculated x-ray spectra indicates that some signature of
the concentration gradients effects should be found in the
intensities of the second-order peaks I+2 and I−2. The strength
of the I+2 peak is overestimated �and I−2 is underestimated�
by about a factor 2 if one neglects gradient effects in a 	
=12 multilayer. In other words, composition gradients have
an asymmetrical effect on the I�2 satellites. To confirm this
trend for other composition wavelengths, we plot in Fig. 6�c�
the intensity ratios R�2

nonlin.= I�2
nonlin. / I�2

SMA and R�2
ext.= I�2

ext. / I�2
SMA

as a function of 	. One can observe that indeed, R�2
nonlin. in-

crease or decrease with 	 while the ratios R�2
ext. remain close

to one when the composition gradient terms are accounted
for through the extended model in Eq. �18�.
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V. CONCLUSION

In this work, we investigate the relationship between
strain and composition in coherent Cu-Ni multilayers. The
initial motivation was to improve the interpretation of x-ray
diffraction experiments by testing if the continuum models
generally used for this purpose could be safely applied on
these objects where the composition varies on the nanoscale.
Along this study, we faced an important property of these
metallic systems that render unsuitable the use of the classi-
cal models: the presence of interfacial relaxations and com-
position gradient effects. These observations were made
from atomistic calculations of the strain fields within tight-
binding potentials. A systematic exploration of strain in �100�
sinusoidal multilayers is then developed. This Fourier analy-
sis allows us to derive an extended continuum model that
accounts for the composition gradient effects on the coher-
ency strain 	Eq. �18��. Interestingly, the additional terms that

are necessary to bridge the gap between the classical descrip-
tion and atomistic calculations should be significant enough
to change the shape of x-ray spectra as it is discussed in this
paper. X-ray diffraction experiments are currently performed
to verify this property. From a theoretical viewpoint, this
work leaves open questions that should be addressed in fu-
ture work: �i� from our extended model in Eq. �18�, the de-
pendence of coefficient �i with the in-plane distance d� has to
be studied to investigate other strain constrains �for instance
in coherent deposited films�. �ii� The formulation given in
Eq. �18� offers an interesting basis to derive a complemen-
tary expression of the elastic energy term in Cahn’s model3

that would account for the effect of composition gradients on
strain.
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